

Error Rates in Forensic Science

Jonathan J. Koehler Professor of Law & Professor of Business jay.koehler@asu.edu

Forensic Science for the 21st Century Arizona State University Tempe, AZ

April 3, 2009

Forensic Scientists Make Errors

Source: Saks & Koehler, 309 Science 892 (2005)

Why Do Error Rates Matter?

Because the probative value of a reported association (or "match") is restricted by the chance that a false positive error occurred

Error Rates by Area

1

Modality	Error Rate
Bitemarks	64%
Voice Identification	63%
Handwriting	40%
Hair	35%
Fingerprints (by person)	4% to 7%
Fingerprints (by sample)	0.6%
DNA (through 1998)	0.2% to 1.2%

Interpret these error rates with great caution ...

Why the Caution?

- Because existing studies and tests were not designed to provide a reliable indication of error rates in the various forensic sciences
- Because the data are minimal (sometimes based on a single study)
- Because "error rate" can be defined in various ways

Hair Study—Microscopic Analysis vs. mtDNA

Source: Houck & Budowle, 47 J. Forensic Sci. 964 (2002)

Four Outcomes:

- Association
- Exclusion
- Inconclusive
- No Exam (samples unsuitable for testing)

Omitting Inconclusives and No Exams: N=95 hair pairs

Error Chart

Source: Koehler, 59 Hastings L. J. 1077 (2008)

					False Negative Error: Examiner reports an exclusion between		
			State of Nature (i.e., Truth)		two items / marks when, in fact, they came from the same source. C		
			Same	Different	= A + C		
			Source (association)	Source (exclusion)	False Positive Error: Examiner reports an association between two items / marks when, in fact,		
		Association	А	В	they came from different sources.		
Examiner's		True Positives	False Positives	= B + D			
	Judgment	Exclusion False Negatives	С	D	False Discovery Error Rate: Proportion of times examiner is wrong when he/she reports an		
			True Negatives	association. = $\frac{B}{B}$			
	A + B						

Hair Study: False Negative Rate

False negative error rate:

P(Microscopic Exclusion | mtDNA Same Source) =

$$\frac{0}{0+69} = 0\%$$

Hair Study: False Positive Rate

<u>False positive error rate</u>: P(Microscopic Association | mtDNA Diff Source) = $\frac{9}{9 + 17}$ = 35%

Hair Study: False Discovery Rate

False discovery error rate: P(mtDNA Diff Source | Microscopic Association) = $\frac{9}{9+69}$ = 12%

What Do We Need Right Now?

DATA

Specifically ...

- We need proficiency test data that estimate error rates under various conditions
- Current Proficiency Tests
 - Internal
 - External: voluntary, infrequent
 - Open
- □ Future Proficiency Tests
 - Administrators: Disinterested
 - Participants: Representative of field (track experience)
 - Samples: Representative of case work (track difficulty)
 - Method: Blind